Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Chemosphere ; 355: 141765, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531497

RESUMO

Due to the increasing evidence of widespread sub-micron pollutants in the atmosphere, the impact of airborne nanoparticles is a subject of great relevance. In particular, the smallest particles are considered the most active and dangerous, having a higher surface/volume ratio. Here we tested the effect of iron oxide (Fe3O4) nanoparticles (IONPs) with different mean diameter and size distribution on the model plant Tillandsia usneoides. Strands were placed in home-built closed boxes and exposed to levels of airborne IONPs reported for the roadside air, i.e. in the order of 107 - 108 items m-2. Plant growth and other morpho-physiological parameters were monitored for two weeks, showing that exposure to IONPs significantly reduced the length increment of the treated strands with respect to controls. A dose-dependence of this impairing effect was found only for particles with mean size of a few tens of nanometers. These were also proved to be the most toxic at the highest concentration tested. The IONP-induced hamper in growth was correlated with altered concentration of macro- and micronutrients in the plant, while no significant variation in photosynthetic activity was detected in treated samples. Microscopy investigation showed that IONPs could adhere to the plant surface and were preferentially located on the trichome wings. Our results report, for the first time, evidence of the negative effects of airborne IONP pollution on plant health, thus raising concerns about related environmental risks. Future research should be devoted to other plant species and pollutants to assess the impact of airborne pollution on plants and devise suitable attenuation practices.


Assuntos
Poluentes Atmosféricos , Tillandsia , Animais , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poluição Ambiental , Nanopartículas Magnéticas de Óxido de Ferro
2.
Plant Physiol Biochem ; 207: 108400, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38295526

RESUMO

Lead (Pb) is a widespread highly toxic and persistent environmental pollutant. Plant leaves play a key role in accumulating atmospheric Pb, but its distribution in different cells and subcellular structures and the factors affecting it have been little studied. Here, Tillandsia usneoides, an indicator plant for atmospheric heavy metals, was treated with an aerosol generation device to analyze Pb contents in different cells (three types of cells in leaf surface scales, epidermal cells, mesophyll cells, vascular bundle cells), subcellular structures (cell wall, cell membrane, vacuoles, and organelles) and cell wall components (pectin, hemicellulose 1 and 2, and cellulose). Results show the different cells of T. usneoides leaves play distinct roles in the process of Pb retention. The outermost wing cells are structures that capture external pollutants, while mesophyll cells, as the aggregation site after material transport, ring cells, disc cells, epidermal cells, and vascular cells are material transporters. Pb was only detected in the cell wall and pectin, indicating the cell wall was the dominant subcellular structure for Pb retention, while pectin was the main component affecting Pb retention. FTIR analysis of cell wall components indicated the esterified carboxyl (CO) functional group in pectin may function in absorbing Pb. Pb entered leaf cells mainly in the form of low toxicity and activity to enhance its resistance.


Assuntos
Chumbo , Folhas de Planta , Tillandsia , Poluentes Ambientais , Chumbo/toxicidade , Chumbo/metabolismo , Metais Pesados/metabolismo , Pectinas/metabolismo , Folhas de Planta/metabolismo
3.
Isotopes Environ Health Stud ; 60(2): 141-161, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270129

RESUMO

We characterized the elemental and C and N stable isotope compositions of Tillandsia fasciculata Sw., Tillandsia balbisiana Schult. & Schult.f. and Tillandsia recurvata (L.) L. samples collected in Cienfuegos (Cuba). Results showed high enrichment factors for S, Hg, Cd, Pb, P, Zn, Cu, Mo, Sb and Ca in all Tillandsia species, indicating inputs from local anthropogenic activities (road traffic, industries and cement production). Carbon concentrations and δ13C varied from 38.3-47.7 % and -20.4 to -13.4 ‰ within the three species, respectively. δ13C showed seasonal dependence with the dry and wet periods and more 13C-depleted values in urban/industrial areas, coherent with the input of anthropogenic emissions. Nitrogen concentrations (0.4-1.3 %) and δ15N values (-9.9-4.4 ‰) exhibit larger variations and are positively correlated in the three species. The most positive δ15N in T. recurvata (-0.2-4.4 ‰) are attributed to contributions from industrial activities and road traffic. In fact, both δ15N and total nitrogen (TN) values increase in sites with higher road traffic and show significant correlations with typical road traffic and industrial tracers. Finally, we calculate an average total nitrogen deposition rate of 4.4 ± 2.3 kg ha-1 a-1 from N content in T. recurvata, similar to the existing values determined in the region by field measurements, but higher than the global terrestrial average.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Tillandsia , Tillandsia/química , Poluentes Atmosféricos/análise , Monitoramento Biológico , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Região do Caribe , Nitrogênio , Isótopos
4.
Environ Sci Pollut Res Int ; 31(9): 13046-13062, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38240974

RESUMO

Green synthesis (GS), referred to the synthesis using bioactive agents such as plant materials, microorganisms, and various biowastes, prioritizing environmental sustainability, has become increasingly relevant in international scientific practice. The availability of plant resources expands the scope of new exploration opportunities, including the evaluation of new sources of organic extracts, for instance, to the best of our knowledge, no scientific articles have reported the synthesis of zinc oxide nanoparticles (ZnO NPs) from organic extracts of T. recurvata, a parasitic plant very common in semiarid regions of Mexico.This paper presents a greener and more efficient method for synthesizing ZnO NPs using T. recurvata extract as a reducing agent. The nanoparticles were examined by different techniques such as UV-vis spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and BET surface analysis. The photocatalytic and adsorptive effect of ZnO NPs was investigated against methylene blue (MB) dye in aqueous media under sunlight irradiation considering an equilibrium time under dark conditions. ZnO nanoparticles were highly effective in removing MB under sunlight irradiation conditions, showing low toxicity towards human epithelial cells, making them promising candidates for a variety of applications. This attribute fosters the use of green synthesis techniques for addressing environmental issues.This study also includes the estimation of the supported electric field distributions of ZnO NPs in their individual spherical or rounded shapes and their randomly oriented organization, considering different diameters, by simulating their behavior in the visible wavelength range, observing resonant enhancements due to the strong light-matter interaction around the ZnO NPs boundaries.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Tillandsia , Óxido de Zinco , Humanos , Óxido de Zinco/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Nanopartículas/química , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Antibacterianos/química , Testes de Sensibilidade Microbiana
5.
Microbiome ; 11(1): 246, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37936139

RESUMO

BACKGROUND: The lack of water is a major constraint for microbial life in hyperarid deserts. Consequently, the abundance and diversity of microorganisms in common habitats such as soil are strongly reduced, and colonization occurs primarily by specifically adapted microorganisms that thrive in particular refugia to escape the harsh conditions that prevail in these deserts. We suggest that plants provide another refugium for microbial life in hyperarid deserts. We studied the bacterial colonization of Tillandsia landbeckii (Bromeliaceae) plants, which occur in the hyperarid regions of the Atacama Desert in Chile, one of the driest and oldest deserts on Earth. RESULTS: We detected clear differences between the bacterial communities being plant associated to those of the bare soil surface (PERMANOVA, R2 = 0.187, p = 0.001), indicating that Tillandsia plants host a specific bacterial community, not only dust-deposited cells. Moreover, the bacterial communities in the phyllosphere were distinct from those in the laimosphere, i.e., on buried shoots (R2 = 0.108, p = 0.001), indicating further habitat differentiation within plant individuals. The bacterial taxa detected in the phyllosphere are partly well-known phyllosphere colonizers, but in addition, some rather unusual taxa (subgroup2 Acidobacteriae, Acidiphilum) and insect endosymbionts (Wolbachia, "Candidatus Uzinura") were found. The laimosphere hosted phyllosphere-associated as well as soil-derived taxa. The phyllosphere bacterial communities showed biogeographic patterns across the desert (R2 = 0.331, p = 0.001). These patterns were different and even more pronounced in the laimosphere (R2 = 0.467, p = 0.001), indicating that different factors determine community assembly in the two plant compartments. Furthermore, the phyllosphere microbiota underwent temporal changes (R2 = 0.064, p = 0.001). CONCLUSIONS: Our data demonstrate that T. landbeckii plants host specific bacterial communities in the phyllosphere as well as in the laimosphere. Therewith, these plants provide compartment-specific refugia for microbial life in hyperarid desert environments. The bacterial communities show biogeographic patterns and temporal variation, as known from other plant microbiomes, demonstrating environmental responsiveness and suggesting that bacteria inhabit these plants as viable microorganisms. Video Abstract.


Assuntos
Microbiota , Tillandsia , Humanos , Microbiologia do Solo , Refúgio de Vida Selvagem , Bactérias/genética , Plantas/microbiologia , Solo , Clima Desértico
6.
Environ Res ; 233: 116435, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37331556

RESUMO

In this study, samples of bromeliad Tillandsia usneoides (n = 70) were transplanted and exposed for 15 and 45 days in 35 outdoor residential areas in Brumadinho (Minas Gerais state, Brazil) after one of the most severe mining dam collapses in the world. Trace elements aluminum (Al), arsenic (As), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), nickel (Ni) and zinc (Zn) were quantified by atomic absorption spectrometry. Scanning electron microscope generated surface images of T. usneoides fragments and particulate matter (PM2.5, PM10 and PM > 10). Aluminum, Fe and Mn stood out from the other elements reflecting the regional geological background. Median concentrations in mg kg-1 increased (p < 0.05) between 15 and 45 days for Cr (0.75), Cu (1.23), Fe (474) and Mn (38.1), while Hg (0.18) was higher at 15 days. The exposed-to-control ratio revealed that As and Hg increased 18.1 and 9.4-fold, respectively, not showing a pattern associated only with the most impacted sites. The PM analysis points to a possible influence of the prevailing west wind on the increase of total particles, PM2.5 and PM10 in transplant sites located to the east. Brazilian public health dataset revealed increase in cases of some cardiovascular and respiratory diseases/symptoms in Brumadinho in the year of the dam collapse (1.38 cases per 1000 inhabitants), while Belo Horizonte capital and its metropolitan region recorded 0.97 and 0.37 cases, respectively. Although many studies have been carried out to assess the consequences of the tailings dam failure, until now atmospheric pollution had not yet been evaluated. Furthermore, based on our exploratory analysis of human health dataset, epidemiological studies are required to verify possible risk factors associated with the increase in hospital admissions in the study area.


Assuntos
Poluentes Atmosféricos , Mercúrio , Metais Pesados , Tillandsia , Oligoelementos , Humanos , Oligoelementos/análise , Material Particulado/análise , Tillandsia/química , Brasil , Monitoramento Biológico , Saúde Pública , Alumínio , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Cromo/análise , Mercúrio/análise , Manganês/análise , Metais Pesados/análise
7.
Sci Total Environ ; 894: 164791, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37308022

RESUMO

Arboreal epiphytes, plants that grow on trees, can significantly increase rainwater storage and evaporation (i.e., "interception") within canopies. Drought conditions may affect this hydrological role, as epiphytes' physiological responses change leaf properties that affect water retention. Drought-induced changes in epiphyte water storage capacity could substantially alter canopy hydrology, but have not been studied. We tested the effects of drought on the water storage capacity (Smax) of leaves and leaf properties of two epiphytes with distinct ecohydrological traits: resurrection fern (Pleopeltis polypodioides), and Spanish moss (Tillandsia usneoides). Both species are common in maritime forests of the Southeastern USA, where climate change is expected to decrease precipitation in spring and summer. To simulate drought, we dried leaves to 75 %, 50 %, and ~25 % of fresh weight, and quantified their Smax in fog chambers. We measured relevant leaf properties: hydrophobicity, minimum leaf conductance (gmin; a measure of water loss under drought), and Normalized Difference Vegetative Index (NDVI). We found that drought significantly reduced Smax and increased leaf hydrophobicity for both species, indicating that lower Smax may be due to shedding of droplets. While the overall reduction in Smax did not differ between the two species, they exhibited distinct drought responses. Dehydrated T. usneoides leaves had lower gmin, demonstrating the ability to limit water loss under drought. P. polypodioides increased gmin when dehydrated, consistent with its extraordinary ability to withstand water loss. NDVI decreased with dehydration in T. usneoides but not P. polypodioides. Our results suggest that increased drought may have a dramatic effect on canopy water cycling by reducing the Smax of epiphytes. Reduced rainfall interception and storage in forest canopies could have widespread effects on hydrological cycling, thus understanding the potential feedbacks of plant drought response on hydrology is crucial. This study highlights the importance of connecting foliar-scale plant response with broader hydrological processes.


Assuntos
Tillandsia , Árvores , Árvores/fisiologia , Secas , Água/fisiologia , Florestas , Folhas de Planta/fisiologia
8.
Environ Pollut ; 330: 121744, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127238

RESUMO

The capacity of Spanish moss (Tillandsia usneoides), an aerial plant, to adsorb radon (Rn) and absorb CO2 was assessed to analyze its capacity to remove pollutants from indoor air and to determine its radon (Rn) tolerance mechanism. Transcriptomics and metabolomics techniques were used to analyze the response of the plant to Rn exposure. Spanish moss absorbed indoor CO2 at night using the type of photosynthesis termed crassulacean acid metabolism. The CO2 absorption efficiency of the plant was mainly affected by the light duration and diurnal temperature differences. The highest purification efficiency was 48.25%, and the scales on the Spanish moss leaf surface were the key sites for Rn adsorption. Metabolome analysis showed that Rn exposure induced differential metabolites significantly enriched in the metabolism of lipids, amino acids, nucleotides, and carbohydrates. Transcriptome analysis showed significantly upregulated expression levels of functional genes in Rn-exposed leaves. Rn had significant effects on respiratory metabolism, as indicated by upregulated expression of metabolites and functional genes related to the glycolysis pathway, pyruvate oxidation, tricarboxylic acid cycle, and oxidative phosphorylation pathway. These responses indicated that the internal mechanism by which Spanish moss alleviates Rn stress involves an enhancement of cellular energy supplies and regulation of respiratory metabolic pathways to allow adaptation to Rn pollution.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Tillandsia , Radônio/análise , Tillandsia/química , Tillandsia/metabolismo , Adsorção , Dióxido de Carbono/análise , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento de Radiação/métodos
9.
Sci Total Environ ; 889: 164328, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37211113

RESUMO

Cadmium is one of the most biotoxic substances among all heavy metals, but an increasing number of studies indicate that low-dose Cd can induce hormesis in some plants. However, the frequency of hormesis in various biomarkers (molecular, resistance, and damage markers) and their associated function in hormesis-generation are poorly understood. In this study, the heavy metal accumulator plant Tillandsia ionantha Planch. was exposed to 5 mM CdCl2 with 6 different time periods. The trends of 18 biomarkers after Cd exposure were detected. The percentage for all non-monophasic responses based on dose-response modeling was higher (50 %), in which seven (38.89 %) biomarkers showed hormesis, indicating that hormesis effect can commonly occur in this plant. However, the occurrence frequency of hormesis in different types of biomarkers was different. Six Cd resistance genes, glutathione (GSH) among 6 resistance markers, and 0 damage markers showed hormesis. Factor analysis further showed that the 6 Cd resistance genes and GSH were positively intercorrelated in the first principal component. Therefore, heavy metal resistance genes and GSH may play an important role in the generation of hormesis. Our experiment shows that time-dependent non-monophasic responses, including hormesis, are activated by considerably high concentrations of Cd, presenting a strategy to cope with and potentially reduce the anticipated damage as the dose of stress increases over time.


Assuntos
Metais Pesados , Tillandsia , Cádmio/toxicidade , Hormese , Metais Pesados/toxicidade , Plantas , Glutationa
10.
J Plant Physiol ; 282: 153945, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36805519

RESUMO

CAM plants are superior to C3 plants in drought resistance because of their peculiar photosynthesis pathway and morphological features. While those aspects have been studied for decades, little is known about the photosynthetic machinery of CAM plants. Here, we used a combination of biochemical and biophysical methods to study the photosynthetic apparatus of Tillandsia flabellate, an obligatory CAM plant. Most of the Photosystems super- and sub-complexes have properties very similar to those of Arabidopsis, with the main difference that in Tillandsia PSI-LHCI complexes bind extra LHCI. Functional measurements show that the PSI/PSII ratio is rather low compared to other plants and that the antenna size of both PSI and PSII is small. Upon 30-day water deficiency, the composition of the photosystems does not change significantly, PSII efficiency remains high and no Photosystem II photoinhibition was detected despite a reduction of non-photochemical quenching (NPQ).


Assuntos
Arabidopsis , Tillandsia , Tillandsia/metabolismo , Clorofila/metabolismo , Água/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Arabidopsis/metabolismo , Luz
11.
J Hazard Mater ; 437: 129314, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35728311

RESUMO

Due to the increasing evidence of widespread plastic pollution in the air, the impact on plants of airborne particles of polycarbonate (PC), polyethyleneterephthalate (PET), polyethylene (PE), and polyvinylchloride (PVC) was tested by administering pristine and aged airborne micro-nanoplastics (MNPs) to Tillandsia usneoides for two weeks. Here we showed that exposure to pristine MNPs, significantly reduced plant growth with respect to controls. Particularly, PVC almost halved plant development at the end of the treatment, while the other plastics exerted negative effects on growth only at the beginning of the exposure, with final stages comparable to those of controls. Plants exposed to aged MNPs showed significantly decreased growth at early stages with PC, later in the growth with PE, and even later with PET. Aged PVC did not exert a toxic effect on plants. When present, the plastic-mediated reduction in plant growth was coupled with a decrease in photosynthetic activity and alterations in the plant concentration of macro- and micronutrients. The plastic particles were showed to adhere to the plant surface and, preferentially, on the trichome wings. Our results reported, for the first time, evidence of negative effects of airborne plastic pollution on plant health, thus raising concerns for related environmental risks.


Assuntos
Bromeliaceae , Tillandsia , Animais , Monitoramento Ambiental/métodos , Microplásticos , Plásticos/toxicidade , Cloreto de Polivinila/toxicidade
12.
Sci Total Environ ; 811: 152384, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34923012

RESUMO

While numerous studies reported hormesis in plants exposed to heavy metals, metals were commonly added in the growth substrate (e.g. soil or solution). The potential of heavy metals in the atmosphere to induce hormesis in plants, however, remains unknown. In this study, we exposed the widely-used accumulator plant Tillandsia usneoides to 10 atmospheric Pb concentrations (0-25.6 µg·m-3) for 6 or 12 h. Three types of dose-response relationships between different response endpoints (biomarkers) and Pb concentrations were found for T. usneoides. The first was a monophasic dose response, in which the response increased linearly with increasing Pb concentrations, as seen for metallothionein (MT) content after a 6-h exposure. The second and dominating type was a biphasic-hormetic dose response, exhibited by malondialdehyde (MDA), superoxide anion radical (O2-), and superoxide dismutase (SOD) after 6 or 12 h of exposure and by glutathione (GSH) and MT content after 12 h of treatment. The third type was a triphasic dose response, as seen for leaf electric conductivity after 6 or 12 h of exposure and GSH after 6 h of exposure. This finding suggests that Pb inhibited the response of T. usneoides at very low concentrations, stimulated it at low-to-moderate concentrations, and inhibited it at higher concentrations. Our results demonstrate diverse adaptation mechanisms of plants to stress, in the framework of which alternating between up- and down-regulation of biomarkers is at play when responding to different levels of toxicants. The emergence of the triphasic dose response will further enhance the understanding of time-dependent hormesis.


Assuntos
Metais Pesados , Tillandsia , Atmosfera , Hormese , Chumbo/toxicidade
13.
Microsc Res Tech ; 85(1): 253-269, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34369639

RESUMO

Tillandsia L. is the largest genus of the family Bromeliaceae, containing 755 species and seven subgenera. Morphoanatomical studies of leaves provide useful characteristics to phylogenetic, taxonomic, and ecological analyses. This study aims to characterize and compare the leaves of 24 species of the four subgenera of Tillandsia that occur in Bahia and also perform adaptative inferences to environmental responses. The results of the species' morphoanatomical studies were compared through dissimilarity analysis. The species have rosulate leaves with varying lengths and widths. The peltate trichomes present variation in the indument density and the length of their wing and central disk. The stomata are longitudinally distributed in one or both sides of the limb. The mesophyll is dorsiventral and presents aquiferous and chlorophyllic parenchymas. The vascular bundles are collateral and partially covered by fibers, except for Tillandsia linearis. Based on the dissimilarity analysis, it was possible to identify the formation of five groups. Group G1 was composed of T. linearis, which diverged from the other species of the subgenus. Group G2 was formed by the remaining species of the subgenus Phytarrhiza. G3 and G4 presented the species of the subgenus Diaphoranthema and Tillandsia, respectively. Group G5 gathered 11 species of the subgenus Anoplophytum and presented higher variability than the other subgenera. Based on the results, the morphoanatomical characteristics can be used to characterize and group Tillandsia species, besides confirming the morphological variability of these species to the epiphyte habit in different environments, especially xeric ones.


Assuntos
Bromeliaceae , Tillandsia , Animais , Microscopia Eletrônica de Varredura , Filogenia , Folhas de Planta
14.
Sci Rep ; 11(1): 20397, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650134

RESUMO

The rapid spread of many weeds into intensely disturbed landscapes is boosted by clonal growth and self-fertilization strategies, which conversely increases the genetic structure of populations. Here, we use empirical and modeling approaches to evaluate the spreading dynamics of Tillandsia recurvata (L.) L. populations, a common epiphytic weed with self-reproduction and clonal growth widespread in dry forests and deforested landscapes in the American continent. We introduce the TRec model, an individual-based approach to simulate the spreading of T. recurvata over time and across landscapes subjected to abrupt changes in tree density with the parameters adjusted according to the empirical genetic data based on microsatellites genotypes. Simulations with this model showed that the strong spatial genetic structure observed from empirical data in T. recurvata can be explained by a rapid increase in abundance and gene flow followed by stabilization after ca. 25 years. TRec model's results also indicate that deforestation is a turning point for the rapid increase in both individual abundance and gene flow among T. recurvata subpopulations occurring in formerly dense forests. Active reforestation can, in turn, reverse such a scenario, although with a milder intensity. The genetic-based study suggests that anthropogenic changes in landscapes may strongly affect the population dynamics of species with 'weedy' traits.


Assuntos
Conservação dos Recursos Naturais , Espécies Introduzidas , Tillandsia , Brasil , Fluxo Gênico/genética , Repetições de Microssatélites/genética , Dinâmica Populacional , Tillandsia/genética , Tillandsia/fisiologia
15.
Phytomedicine ; 89: 153622, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34161895

RESUMO

BACKGROUND: Type 2 Diabetes (T2D) is characterized by deregulation in carbohydrate and lipid metabolism, with a very high mortality rate. Glucose Transporter type 4 (GLUT4) plays a crucial role in T2D and represents a therapeutic target of interest. Tillandsia usneoides (T. usneoides) is a plant used as a remedy for diabetes. T. usneoides decreased blood glucose in different experimental models. However, the involvement of GLUT4 in this effect has not yet been explored. PURPOSE: This study aimed to investigate whether any component in T. usneoides might participate in the effect on blood glucose through a bioassay-guided fractionation, testing its potential antihyperglycemic effect in mice, as well as its influence on GLUT4 translocation in C2C12 myoblasts and primary hepatocytes. METHODS: The aqueous extract and the Ethyl Acetate fraction (TU-AcOEt) of T. usneoides were evaluated in a hypoglycemic activity bioassay and in the glucose tolerance test in CD-1 mice. TU-AcOEt was fractionated, obtaining five fractions that were studied in an additional glucose tolerance test. C1F3 was fractioned again, and its fractions (C2F9-12, C2F22-25, and C2F38-44) were examined by HPLC. The C2F38-44 fraction was analyzed by Mass Spectrometry (MS) and subjected to additional fractionation. The fraction C3F6-9 was explored by Nuclear Magnetic Resonance (NMR), resulting in 5,7,4´-trihydroxy-3,6,3´,5´-tetramethoxyflavone (Flav1). Subsequently, a viability test was performed to evaluate the cytotoxic effect of Flav1 and fractions C2F9-12, C2F22-25. C2F38-44, and C3F30-41 in C2C12 myoblasts and primary mouse hepatocytes. Confocal microscopy was also performed to assess the effect of Flav1 and fractions on GLUT4 translocation. RESULTS: The TU-AcOEt fraction exhibited a hypoglycemic and antihyperglycemic effect in mice, and its fractionation resulted in five fractions, among which fraction C1F3 decreased blood glucose. MS and NMR analysis revealed the presence of Flav1. Finally, Flav1 significantly promoted the translocation of GLUT4 in C2C12 myoblasts and primary hepatocytes. CONCLUSION: To date, Flav1 has not been reported to have activity in GLUT4; this study provides evidence that T. usneoides is a plant with the potential to develop novel therapeutic agents for the control of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Flavonas , Transportador de Glucose Tipo 4/metabolismo , Hepatócitos/efeitos dos fármacos , Hipoglicemiantes , Mioblastos/efeitos dos fármacos , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Flavonas/farmacologia , Hipoglicemiantes/farmacologia , Camundongos , Compostos Fitoquímicos/farmacologia , Tillandsia/química
16.
J Hazard Mater ; 414: 125529, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030407

RESUMO

Atmospheric Hg is a highly toxic heavy metal with bioaccumulative properties. However, relatively few studies have focused on the distribution of Hg in cellular and subcellular structures of plants and factors influencing its accumulation. In this study, we selected Tillandsia usneoides, which is a widely used bioindicator for Hg, to analyze the concentration of Hg in different cells (foliar trichomes, epidermal cells, mesophyll cells, and vascular bundle cells), different subcellular structures (cell wall, cell membrane, vacuoles, and organelles) and different cell wall components (pectin, hemicellulose 1, and hemicellulose 2). It was determined that Hg was present in different types of cells, but there was no significant difference, suggesting that atmospheric Hg circulates dynamically in the surface and internal structural cells of T. usneoides leaves. Subcellular analysis showed that as Hg concentration increased, more Hg accumulated in the vacuoles and cell wall through the compartmentalization mechanism. Hemicellulose had the highest content of Hg, indicating that it is the primary Hg-binding component of the cell wall. The FTIR analysis results showed that after the Hg treatment, the cell wall -OH and COO- absorption peaks changed most significantly, indicating that these functional groups play a vital role in the Hg accumulation process.


Assuntos
Mercúrio , Tillandsia , Folhas de Planta
17.
Bull Environ Contam Toxicol ; 107(1): 69-76, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33666681

RESUMO

In the present study, an urban and industrial area were evaluated through a biomonitoring study employing the Tillandsia purpurea and T. latifolia species as a biomonitor. Plants were collected from a non-contaminated area and transplanted and exposed for three months into study areas to determine metal accumulation. Sixteen elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, Rb, Sb, V, and Zn) were measured using ICP-MS analysis. Datasets were assessed by one-way ANOVA, exposed-to-baseline (EB) ratio, and principal component analysis. Results showed significant differences among study areas for most elements, but no differences were found between species. According to EB ratios, As, Cd, Cr, Cu, Fe, Ni, Pb, Sb, V, and Zn showed EB ratios > 1.75 for both Tillandsia species around the industrial area, indicating influence from the Smelter plant. Ba, Sb, and Zn showed EB ratios > .1.75 in the urban area for both plants, indicating the releasing of pollutants from vehicular sources. PCA showed that most elements are derived from vehicular sources, industrial activities, and dust resuspension.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Tillandsia , Poluentes Atmosféricos/análise , Monitoramento Biológico , Poeira/análise , Monitoramento Ambiental , Metais Pesados/análise
18.
New Phytol ; 231(5): 1906-1922, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33690891

RESUMO

Tillandsia usneoides in epiphytic bromeliads takes up water through absorptive trichomes on the shoot surface under extreme environmental conditions. Although previous studies revealed the way by which T. usneoides absorbs water and prevents water loss, its water transport remains unclear. We characterized structures of trichome wings of T. usneoides. Wing length-to-thickness ratio of 136 and trichome interval (d)-to-wing length (l) ratio (d/l) smaller than 1 caused the water film to flatten the wings sequentially, resulting in domino-like water transport. A hinge-like linkage between wing and outer ring cells and the wing size longer than the elastocapillary length (LEC ) brought about this unique reconfiguration, which is the flattening and recovery of wings. Tillandsia usneoides transported water rapidly on the surface as the water film propagated on the exterior trichomes with flexible wings and the transport distance at the macroscopic scale grew as tx with x = 0.68 ± 0.04, unlike the conventional scaling of t0.5 . Empirical and theoretical investigations proved our assumption that external water transport with the domino-like effect predominated over internal vascular transport. Biomimetic trichome wings simulated the domino-like water transport, highlighting the important role of flexible wing arrays.


Assuntos
Tillandsia , Transporte Biológico , Folhas de Planta , Tricomas , Água
19.
Int J Phytoremediation ; 23(4): 400-406, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930602

RESUMO

Epiphytic Tillandsia species are uniquely suitable for the study of foliar uptake of atmospheric trace metals (ATM) because these plants can only rely on their leaves for this purpose. Therefore, we analyzed the uptake and transport of different metals (Fe, Al, Zn, Mn, Ba, Ti, Cu, Ni, Cr, Sn, Pb, Co, As, and Se) bounded on atmospheric particulate matters (APM) in Tillandsia brachycaulos Schltdl. The results showed that the metal contents inside leaves significantly (p < .05) increased after APM exposure. There was a significant (p < .05) positive correlation between the content of 14 trace metals accumulated on the leaf surface and inside the leaf, which indicated that APM is the main source of ATM uptake. The subcellular analysis showed that the Pb, Cu, Ni, Zn, and Cr absorbed by T. brachycaulos were stored primarily in the cell walls and organelles. After the removal of foliar trichomes of T. brachycaulos, the metal contents on the leaf surface decreased, whereas the contents of most metals inside the leaf increased. This is an evidence that foliar trichomes serve a protective function by intercepting ATM onto the leaf surface.Novelty statementsThere was a significant positive correlation between the contents of 14 trace metals accumulated on the leaf surface and in the leaf of T. brachycaulos, which indicated that atmospheric particulate matters are the main source of trace metals in the leaves.After the removal of foliar trichomes of T. brachycaulos, the trace metal contents on the leaf surface decreased, whereas the contents of most trace metals inside the leaf increased. This is an evidence that foliar trichomes serve a protective function by intercepting atmospheric trace metals onto the leaf surface.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Tillandsia , Oligoelementos , Poluentes Atmosféricos/análise , Biodegradação Ambiental , Monitoramento Ambiental , Metais , Material Particulado , Oligoelementos/análise
20.
Microsc Res Tech ; 84(3): 441-459, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32959456

RESUMO

Tillandsia is the bromeliad genus containing the largest number of species, with wide geographic dispersion and an important ecological role in the ecosystems. Investigations of pollen morphology are important to support taxonomic and conservation studies as well as to choose promising species for cross-pollination to obtain hybrids. The objective of this study was to evaluate the morphology, production, and viability of pollen grains of 24 Tillandsia species that naturally occur in the state of Bahia, Brazil. Pollen grains were acetolized and analyzed by scanning electron microscopy. The pollen were germinated in vitro in two culture media (BM and BKM) and collected at three floral development stages (pre-anthesis, anthesis and post-anthesis). Pollen viability also was analyzed by staining with Alexander's solution and acetocarmine in three floral development stages. Variations in the ornamentation and size of the pollen were observed among the species studied, with the majority having medium size, while T. polystachia and T. juncea had large grains and the subgenera Diaphoranthema and Phytarrhiza had small grains. The pollen of the majority of species had bilateral symmetry, with a single irregularly shaped colpus, semitectate exine and reticulated-heterobrochate surface. The pollen presented high germination percentage, tube length and viability according to the histochemistry, except for T. recurvata, T. usneoides and T. loliacea. The BKM medium and collection of pollen during anthesis produced the best results for the Tillandsia species. The results can support studies of the taxonomy and conservation of these species, which have great environmental importance and high value for ornamental purposes.


Assuntos
Bromeliaceae , Tillandsia , Ecossistema , Microscopia Eletrônica de Varredura , Pólen
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...